If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4u^2-31u=8
We move all terms to the left:
4u^2-31u-(8)=0
a = 4; b = -31; c = -8;
Δ = b2-4ac
Δ = -312-4·4·(-8)
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-33}{2*4}=\frac{-2}{8} =-1/4 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+33}{2*4}=\frac{64}{8} =8 $
| 2x+1=11+55 | | 75=-15b | | S=S=180n-360 | | b-3+6b=31 | | 19y=36-56 | | 4a+15-2a+8+7a-4=350 | | (X/4)+(3x-4)=22 | | -2(n-12)-1=-2n+25 | | 15x+.25=20x+.5 | | 7(x-4)^2-3(x+5)^2=4(x+1)(x-1) | | 1/2z+4=5/z-8 | | 15x+.25=20x+5 | | 3/2b+(b+45)+(2b-40)+90+b=540 | | 22-4x=16-2x | | 4.13=(.18)8+b | | 420=7/6a | | 3r+2+7r+1=93 | | 3x-4+2x-6=80 | | I=-20x2+400x | | 2x+25=5x-10 | | 3r+2+7r+1=-93 | | -5x-7/2=43/2 | | Y-3=3/5(x-0) | | -4(-6d)=9(2d-2) | | 12x3+4x2-3x-1=0 | | 4(24-1)=-10(y-5) | | 12x3+4x3-3x-1=0 | | .25x-4=4 | | -20=-4(n+6) | | 0.064=p3 | | 3.9=0.6x | | 3x-12-12=2x-12+7 |